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1. WEIGHT OF IMPORTANCE SAMPLING

We generate elevated test statistics of SNP i by replacing its genotype frequency contrast

vector zi by z∗i = z2
i + r2, where zi is a (d-1)-dim random vector following a standard

multivariate normal distribution. It is therefore sufficient to calculate the weight wi as

wi = h(z∗i )/h(zi)|J | = e−r2/2|J |

where h(z) denotes the probability density function of a (d-1)-dim standard normal distribu-

tion, and |J | denotes the Jacobian determinant of converting zi to z∗i . Let B = diag(1+r2/z2
i )

denote a (d-1)-dim square matrix, u = (zijr
2/z2

i )
T
j=1,···,d−1 denote a (d-1)-dim column vector,

and v = −u. It can be shown that J = (1+r2/z2
i )

−1/2(B+uvT ). By Sylvester’s determinant

theorem, we have |J | = (1 + r2/z2
i )

(d−1)/2−1, and hence the weight function can be expressed

as

wi = e−r2/2(1 + r2/z2
i )

(d−1)/2−1

= f(d−1)(z
2
i + r2)/f(d−1)(z

2
i ) (1)

where f(d−1)(x) denotes the probability density function of a chi-square distribution with

(d − 1) degrees of freedom.
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2. VARIANCE OF IMPORTANCE SAMPLING

Given a clump centered at SNP i, we write the probability P (Ri = 1) as

P (Ri = 1) = P (Ti ≥ t)P (∪i−1
j=i−ki

Tj < Ti,∪i+li
j=i+1Tj ≤ Ti|ti ≥ t) = pq

where p denotes the nominal p-value of SNP i at threshold t and q denotes the conditional

probability of the test statistics of neighboring SNPs below Ti given Ti exceeds the threshold

t. Our importance sampling method generates n independent realizations of SNP data in

the clump and computes P (Ri = 1) numerically by P̂ (Ri = 1) = 1
n

∑n
j=1 rijwij. We can

write the variance of P̂ (Ri = 1) as

V ar(P̂ (Ri = 1)) =
1

n
V ar(Riwi) =

1

n

(

E(R2
i w

2
i ) − (pq)2

)

It therefore suffices to evaluate E(R2
i w

2
i ) respect to (pq)2 of one-step importance sampling,

and multiple sampling iterations will decrease the variance at the rate of
√

n. For notation

simplicity, we skip the subscript i hereafter.

According to our method, we simulate a large chi-square random variable of k degrees of

freedom by first simulating a random variable x of chi-square(k) and then adding a shifting

parameter r to x, i.e., x∗ = r + x. We require that 0 ≤ r ≤ t, and let x0 = t − r denote

the difference. We show in the following that, for any moderate or large threshold t (e.g.,

when t ≥ k), we can choose a proper value of r such that the variance of one-step importance

sampling is bounded within the scale of p. As a result, a few hundreds of importance sampling

iterations will be sufficient to produce an accurate approximation of p-value at threshold t,

with the standard error in a smaller magnitude.

Let fk(·) denotes the density function of chi-square(k). The weight w of one-step impor-

tance sampling is calculated as

w =
fk(x

∗)

fk(x)
=

(r + x)k/2−1e−(r+x)/2

xk/2−1e−x/2
=

(r + x)k/2−1

xk/2−1
e−r/2 (2)

When k > 2, the weight function (2) decreases with respect to x. We therefore can obtain

an upper bound of E(R2w2) as

E(R2w2) =
∫

∞

0
R2w2fk(x)dx =

∫

∞

0
Rwfk(r + x)dx
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≤ max
R=1

(w)
∫

∞

0
Rfk(r + x)dx

=
(r + x0)

k/2−1

x
k/2−1
0

e−r/2
∫

∞

0
Rfk(x + r)dx

=
(r + x0)

k/2−1

x
k/2−1
0

e−r/2pq (3)

Furthermore, we can obtain a lower bound of p when k > 2 by

p = P (χ2
k ≥ r + x0) =

1

2k/2Γ(k/2)

∫

∞

r+x0

xk/2−1e−x/2dx

≥ (r + x0)
k/2−1

2k/2Γ(k/2)

∫

∞

r+x0

e−x/2dx

=
(r + x0)

k/2−1

2k/2−1Γ(k/2)
e−(r+x0)/2 (4)

Since our interest is to evaluate the magnitude of E(R2w2) with respect to (pq)2, we can

compute an upper bound of the ratio between the two quantities. Let γmax(x0) denote the

upper bound of the ratio, we compute γmax(x0) by dividing (3) by the square of (4) and by

q2, i.e.,

γmax(x0) =
2k/2−1Γ(k/2)

x
k/2−1
0

ex0/2q−1

This bound of the maximum ratio can be minimized at x0 = k − 2. As a result, we may set

the shifting parameter r = t − k + 2 for all thresholds t ≥ k − 2, when k > 2, and we set

r = 0 for t < k−2. By Stirling’s approximation for factorials (n! ≃
√

2πn(n
e
)n), we have the

minimum bound of the maximum ratio at x0 = k − 2 equal to

γmax(k − 2) ≃
√

2π(k/2 − 1)q−1 (5)

In summary, when the degrees of freedom k > 2, we can control the variance of one-

step importance sampling with an upper bound of (
√

2π(k/2 − 1) − q)p2q, and hence the

standard deviation of one-step importance sampling in the scale of k1/4p
√

q. Depending on

the conservativeness q incurred by SNP LD, a few hundreds of importance sampling iterations

may be sufficient to reduce the sampling errors to a smaller magnitude with respect to the

approximated p-values. The major determining factor is q. Since q increases with respect
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to the threshold t, the variance will decrease as t increases. For association tests with larger

degrees of freedom, we need to further increase the number of sampling iterations at the rate

of
√

k.

Now we consider the situation where k < 2. We first compute an upper bound of E(R2w2)

as

E(R2w2) =
∫

∞

0
Rw2fk(x)dx =

e−r/2

2k/2Γ(k/2)

∫

∞

0
R

(r + x)k−2

xk/2−1
e−(r+x)/2dx

≤ (r + x0)
k−2e−r

2k/2Γ(k/2)

∫

∞

0
Rx1−k/2e−x/2dx

≤ (r + x0)
k−2e−r

2k−2Γ(k/2)

∫

∞

0
Ry1−k/2e−ydy, where y =

x

2

≤ (r + x0)
k−2e−r

2k−2Γ(k/2)
Γ(2 − k/2) (6)

We then compute a lower bound of p using integration by parts

p = P (χ2
k ≥ r + x0) =

1

2k/2Γ(k/2)

∫

∞

r+x0

xk/2−1e−x/2dx

=
1

2k/2Γ(k/2)
(−2)

[

xk/2−1e−x/2 |∞r+x0
−(k/2 − 1)

∫

∞

r+x0

xk/2−2e−x/2dx
]

≥ 2(r + x0)
k/2−1e−(r+x0)/2

2k/2Γ(k/2)
+ (k − 2)p, when r + x0 ≥ 1

and hence

p ≥ (r + x0)
k/2−1e−(r+x0)/2

(3 − k)2k/2−1Γ(k/2)
, when r + x0 ≥ 1 (7)

By taking the ratio between (6) and the square of (7), divided by q2, we obtain an upper

bound of the maximum ratio between E(R2w2) and (pq)2, for k < 2, as

γmax(x0) = ex0
(3 − k)2

2k/2−1
Γ(k/2)Γ(2 − k/2)q−2

which is minimized at x0 = 0 as

γmax(0) =
(3 − k)2

2k/2−1
Γ(k/2)Γ(2 − k/2)q−2

In summary, when k < 2, we have the variance of one-step importance sampling bounded

by ( (3−k)2

2k/2−1 Γ(k/2)Γ(2 − k/2) − q2)p2. In association tests, k = 1 is the only value < 2, and
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hence the number of sampling iterations needed solely depends on the conservativeness q,

but not on the threshold t.

Finally, it is easily checked that, when k = 2, the variance of one-step importance sam-

pling equals to p2q(1 − q).
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Figure 1: Maximum bounds γmax of E(R2w2) in the unit of p2, assuming q = 1, for association

tests with different degrees of freedom k.
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3. EXAMPLES OF POISSON APPROXIMATION

We checked whether the number of significant clumps based on our definition really follows a

Poisson distribution. We partitioned the WTCCC1 data (2000 cases and 3000 controls) into

about 50 smaller datasets, with 10,000 consecutive SNPs in each dataset covering an average

of 60Mb region in the human genome. We selected three thresholds T =12.5, 15.0, and

17.5, respectively, so that the mean numbers of significant clumps per dataset were 1, 3, 10,

respectively. Figure 2 shows that the number of significant clumps follows closely to Poisson

distributions. The number of significant SNPs, on the other hand, has a highly inflated

variance. It is worthy to point out that, although the distributions of the two numbers

(of clumps vs. of SNPs) differ significantly, the probability of both numbers equal to 0 is

the same. That is, they have the same family-wise false positive rate. This validates our

approach of approximating genome-wide significance using clumps.
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Figure 2: Distribution comparison of the number of significant association signals. The num-

ber of significant clumps (circles) and the number of significant SNPs (crosses) are calculated

from the WTCCC1 data of 10,000 SNPs per dataset from 500 permuted datasets. The sig-

nificance thresholds are chosen to control the expected number of false positive clumps (λ)

shown on top of each plot. (a) Empirical distributions compared with Poisson(λ) distribu-

tions (solid line). (b) Corresponding quantile-quantile plots together with reference lines.
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4. ENCODE REGIONS

ENCODE regions consist of 1% of the human genome selected to best represent the human

genome diversities. We downloaded the ENCODE SNP data of CEU and YRI samples from

the HapMap website and applied our method to approximate the genome-wide significance

extrapolated from each ENCODE region. There are 10 ENCODE regions for which the

SNP data are available, including both dbSNPs and novel SNPs detected by the ENCODE

resequencing project. The ENCODE SNPs capture almost the complete set of common SNPs

in 1% of the human genome. After filtering out non-polymorphic SNPs within CEU and

YRI samples, the average SNP density of each ENCODE region is 2 SNPs per kb for CEU

and 2.46 SNPs per kb for YRI, which roughly correspond to 6 million SNPs genome-wide.

Figure 3a shows the estimated deflation rates (effective number of independent SNPs di-

vided by the total number of SNPs) at threshold 37.155 from the 10 ENCODE regions. The

threshold corresponds to the Bonferroni adjusted p-value 0.05 for 6 million SNPs. Assum-

ing 1000 cases and 1000 controls in a dataset, we observed considerably different deflation

rates from the 10 ENCODE regions. In particular, ENm010 is much less conservative than

ENm013 and ENm014, although they are all located on chromosome 7, indicating that the

significance of associations is highly variable among local regions. Similar to the HapMap

results, we again observed a consistent pattern of deflation rates across ENCODE regions

between CEU and YRI samples, with correlation coefficient 0.925 (p-value 0.0001). We also

observed in Figure 3b a significant correlation between deflation rates and recombination

rates across ENCODE regions (0.90 in the CEU sample with p-value 0.0008 and 0.87 in the

YRI sample with p-value 0.002), excluding ENm010.
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Figure 3: Deflation rates approximated from ENCODE regions, assuming 6 million SNPs

genome-wide in 1000 cases and 1000 controls. (a) Bar-plot of the deflation rates estimated

from each ENCODE region to the whole-genome in CEU and YRI populations, respectively,

with standard errors. (b) Scatter plot of the deflation rates against the recombination rate

of ENCODE regions in CEU (circle) and YRI (cross) populations, respectively.
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